57 research outputs found

    Van Lambalgen's Theorem for uniformly relative Schnorr and computable randomness

    Full text link
    We correct Miyabe's proof of van Lambalgen's Theorem for truth-table Schnorr randomness (which we will call uniformly relative Schnorr randomness). An immediate corollary is one direction of van Lambalgen's theorem for Schnorr randomness. It has been claimed in the literature that this corollary (and the analogous result for computable randomness) is a "straightforward modification of the proof of van Lambalgen's Theorem." This is not so, and we point out why. We also point out an error in Miyabe's proof of van Lambalgen's Theorem for truth-table reducible randomness (which we will call uniformly relative computable randomness). While we do not fix the error, we do prove a weaker version of van Lambalgen's Theorem where each half is computably random uniformly relative to the other

    Metastable convergence theorems

    Full text link
    The dominated convergence theorem implies that if (f_n) is a sequence of functions on a probability space taking values in the interval [0,1], and (f_n) converges pointwise a.e., then the sequence of integrals converges to the integral of the pointwise limit. Tao has proved a quantitative version of this theorem: given a uniform bound on the rates of metastable convergence in the hypothesis, there is a bound on the rate of metastable convergence in the conclusion that is independent of the sequence (f_n) and the underlying space. We prove a slight strengthening of Tao's theorem which, moreover, provides an explicit description of the second bound in terms of the first. Specifically, we show that when the first bound is given by a continuous functional, the bound in the conclusion can be computed by a recursion along the tree of unsecured sequences. We also establish a quantitative version of Egorov's theorem, and introduce a new mode of convergence related to these notions

    Oscillation and the mean ergodic theorem for uniformly convex Banach spaces

    Full text link
    Let B be a p-uniformly convex Banach space, with p >= 2. Let T be a linear operator on B, and let A_n x denote the ergodic average (1 / n) sum_{i< n} T^n x. We prove the following variational inequality in the case where T is power bounded from above and below: for any increasing sequence (t_k)_{k in N} of natural numbers we have sum_k || A_{t_{k+1}} x - A_{t_k} x ||^p <= C || x ||^p, where the constant C depends only on p and the modulus of uniform convexity. For T a nonexpansive operator, we obtain a weaker bound on the number of epsilon-fluctuations in the sequence. We clarify the relationship between bounds on the number of epsilon-fluctuations in a sequence and bounds on the rate of metastability, and provide lower bounds on the rate of metastability that show that our main result is sharp

    Computable Measure Theory and Algorithmic Randomness

    Get PDF
    International audienceWe provide a survey of recent results in computable measure and probability theory, from both the perspectives of computable analysis and algorithmic randomness, and discuss the relations between them

    Algorithmic randomness for Doob's martingale convergence theorem in continuous time

    Full text link
    We study Doob's martingale convergence theorem for computable continuous time martingales on Brownian motion, in the context of algorithmic randomness. A characterization of the class of sample points for which the theorem holds is given. Such points are given the name of Doob random points. It is shown that a point is Doob random if its tail is computably random in a certain sense. Moreover, Doob randomness is strictly weaker than computable randomness and is incomparable with Schnorr randomness

    Algorithmic randomness, reverse mathematics, and the dominated convergence theorem

    Get PDF
    We analyze the pointwise convergence of a sequence of computable elements of L^1(2^omega) in terms of algorithmic randomness. We consider two ways of expressing the dominated convergence theorem and show that, over the base theory RCA_0, each is equivalent to the assertion that every G_delta subset of Cantor space with positive measure has an element. This last statement is, in turn, equivalent to weak weak K\"onig's lemma relativized to the Turing jump of any set. It is also equivalent to the conjunction of the statement asserting the existence of a 2-random relative to any given set and the principle of Sigma_2 collection
    corecore